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Abstract

The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap
superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy
diagram of asymmetric graded-band-gap superlattices, linearized Poisson’s equation has been solved for the two
layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and
valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period
of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take
place when the period of lattice is comparable with the Debye screening length. In the case when the lattice
period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like
pattern.
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Background
The graded-band-gap semiconductors have attracted the
attention of scientists since the year 1957 when H. Kroe-
mer puts forward the idea about quasielectric and quasi-
magnetic fields [1] which, in contrast with the
conventional fields, act in a different way upon electrons
and holes. The presence of such fields is a unique fea-
ture of semiconductors with spatially nonhomogeneous
composition that leads to formation in these semicon-
ductors in a number of properties [2] which are of inter-
est for many practical applications, particularly for
fabrication of efficient solar cells [3, 4]. The strength of
the quasielectric field is proportional to the gradient of
composition, and achieving its large and constant value
is possible at small thickness of specimens. The thick-
ness of structures can be increased without decreasing
the quasielectric field intensity when one uses multilayer
structures or superlattices. In such structures, it is
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possible to observe in the pronounced form of the mani-
festations of the quasielectric field. Since the properties
of graded-band-gap structures strongly depend on the
shape of the energy band diagram, ascertainment of its
peculiarities is the necessary and first stage at studying
these structures. Firstly, the features of formation of the
energy diagram of graded-band-gap superlattices were
established in [5, 6] for the case of the symmetric form
of the latter. These superlattices belong to those of a
classical type [7–9] in which the superlattice’s period is
much greater than the de Broglie wavelength and there-
fore quantization of the energy spectra of electrons and
holes does not take place. The aim of this research is to
theoretically investigate the peculiarities of energy dia-
gram of classical asymmetric graded-band-gap superlat-
tices with linear coordinate dependences of band gap
and electron affinity.

Methods
Constructing an energy band diagram means to plot co-
ordinate dependences of conduction band bottom Ec
and valence band ceiling Ev which are reckoned from
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the vacuum level E0 and expressed through the electro-
static energy—eφ; the electron affinity χ and the band
gap Eg:

Ec xð Þ ¼ E0−eφ xð Þ−χ xð Þ; ð1Þ

In this work, we will consider the sawtooth-like type
of graded-band-gap superlattice in which Eg and χ are
piecewise linear functions (Fig. 1).
The coordinate dependence of electrostatic potential φ

can be found from Poisson’s equation

εε0
d2φ

dx2
¼ e

h
Nc exp

EF−Ec xð Þ
kT

� �
−Nv exp

Ev xð Þ−EF

kT

� �

þNa−Nd

i
:

ð2Þ

In Eq. (2), written for the case of carrier nondegene-
racy, ε and ε0 represent the dielectric constants of the
material and free space; Nc and Nv are the effective
densities of states in the conduction and valence bands,
Na and Nd are the concentrations of acceptors and do-
nors, and EF is the constant Fermi level of the structure.
The electron, n, and hole, p, concentrations appearing

in Eq. (2) can be written as follows:

n xð Þ ¼ N c exp
ζ xð Þ
kT

� �
¼ n0 0ð Þ exp eφþ Δχ xð Þ

kT

� �
; ð3Þ
Fig. 1 Schematic of coordinate profiles of band gap (solid line) and
electron affinity (dashed line) within one period of the superlattice
p xð Þ ¼ Nv exp −
Eg xð Þ þ ζ xð Þ

kT

� �

¼ p0 0ð Þ exp −
ΔEg xð Þ þ Δχ xð Þ þ eφ xð Þ

kT

� �
; ð4Þ

where ζ0(x) = EF − Ec(x), ΔEg(x) = Eg(x) − Eg(0), Δχ(x)
=Δχ(x) – Δχ(0), n0(0), and p0(0) are respectively the con-
centrations of electron and holes in an uniform semi-
conductor with the same composition (band gap) and
doping level as in the graded-band-gap multilayer struc-
ture at the point x = 0. From the neutrality equation, we
have

n0 0ð Þ ¼ N c exp
ζ0 0ð Þ
kT

� �
; ð5Þ

p0 0ð Þ ¼ Nv exp −
Eg 0ð Þ þ ζ0 0ð Þ

kT

� �
¼ n2i 0ð Þ

n0 0ð Þ ; ð6Þ

where ζ0(0) is the value of function

ζ0 xð Þ ¼ kT ln
Nd−Na þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nd−Nað Þ2 þ 4n2i xð Þ

q

2Nc

2
4

3
5

ð7Þ

in the point x = 0. Here, function ζ0(x) has the mean-
ing of difference between the Fermi level and conduction
band bottom (i.e., chemical potential of electrons) in the
uniform semiconductor with the parameters correspond-
ing to the point x of our structure.
For the profiles of Eg(x) and χ(x) presented in Fig. 1,

Poisson’s equation can be written in the following di-
mensionless form:

d2φ

dξ2
¼ 1−κð Þ exp φ þ βξð Þ−κ exp −φ− δ þ βð Þξ½ �

þ N ð8Þ

at 0≤ξ < d1 and

d2φ

dξ2
¼ 1−κð Þ exp φ−β ν ξ−d1

� �þ d1
	 
	 


−κ exp
	
−φ

þ δ þ βð Þ νξ− νþ 1ð Þd1
	 ��Þ þ N

ð9Þ

at d1≤ξ < d1 þ d2;

where φ ¼ eφ=kT , ξ = x/LD, LD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εε0kT=e2 n0 0ð Þ þ p0 0ð Þ½ �p

, δ = (LD/kT)dEg/dx (at x < d1),
β = (LD/kT)dχ/dx (at x < d1), κ = p0(0)/[n0(0) + p0(0)], ν =
d1/d2, and N ¼ Na−Ndð Þ= n0 0ð Þ þ p0 0ð Þ½ �:
Equations (8) and (9) should obey the following

boundary conditions:



Fig. 2 Coordinate dependences of electrostatic potential (a), edges
of conduction band (solid lines) and valence band (dashed lines) (b),
and charge density (c) for d1 + d2 = 5LD, ΔEg(d1) = 0.1kT, κ = 0.5, and
d1/(d1 + d2) = 0.5 (1), 0.2 (2), and 0.05(3)
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φ ξ ¼ −d1
� � ¼ φ ξ ¼ þd1

� �
; φ ξ ¼ þ0ð Þ

¼ φ ξ ¼ −d2
� �

; ð10Þ
dφ
dξ

ξ ¼ −d1
� � ¼ dφ

dξ
ξ ¼ þd1
� �

;
dφ
dξ

ξ ¼ þ0ð Þ

¼ dφ
dξ

ξ ¼ −d2
� �

; ð11Þ

which reflect the continuity of electrostatic potential
and electric field strength at the interfaces.

Results and Discussion
For obtaining the analytical solution of boundary prob-
lem (8)–(11), we consider the case when the drops in Eg
and χ are small in comparison with kT(|ΔEg(d1)|<<kT,
|Δχ(d1)|<<kT). Then, the right hand side of (8) and (9)
can be linearized what allows us to obtain the following
expressions for Ec(ξ):

Ec ξð Þ−Ec 0ð Þ
kT

¼ κδξ− νþ 1ð Þ

� βþ κδð Þ
sinh d1

2

� �
sinh ξ− d

!
1

2

� �

sinh d1þd2
2

� �

ð12Þ

at 0≤ξ < d1;

Ec ξð Þ−Ec 0ð Þ
kT

¼ −νκδξ þ νþ 1ð Þ

� βþ κδð Þ d1−
exp d 1

2

� �
sinh d1

2

� �
cosh ξ− d

!
1þd2
2

� �

sinh d1þd2
2

� �

2
664

3
775

ð13Þ

at d1≤ξ < d2 þ d1:
Since Ev(ζ) = Ec(ζ) − Eg(ζ), the above expressions allow

one to calculate the coordinate dependences of the
valence band ceiling.
Let us analyze the general features of energy band dia-

gram formation on the example of the simplified but
quite realistic structure with intrinsic conductivity (κ =
0.5) in which the edge of valance band does not depend
on the composition and therefore on the coordinate (β
+ δ = 0). Such a “common anion rule” [10] is fulfilled in
a number of solid solutions on the basis of A2B6 and
A3B5 compounds.
The calculated dependences are shown in Figs. 2 and

3 for the cases of comparable and large period with re-
spect to the Debye screening length.
It follows from the solution of Eqs. (8) and (9) that

contrary to the case of symmetric superlattices [5, 6],
the electrostatic potential in the asymmetric ones non-
motonously depends on the coordinate within the layer
of larger thickness (Figs. 2 and 3a) reaching there
both minimum and maximum. These features are
also manifested in the shape of the energy band dia-
gram (Figs. 2 and 3b) especially in the case when
the thickness of larger layer is of the order of the
Debye length. Then, in two layers of the lattice’s
period, the space charge is built up (Fig. 2c) with
the integral electroneutrality being fulfilled within
each layer. The charge of maximal density is located
at the interfaces and its absolute value increases at
increasing the degree of lattice asymmetry. When
thickness of the lattice’s layer greatly exceeds the
Debye length, the conduction and valence edges are
characterized by the linear dependences in the whole
volume for the exception of thin regions in the
vicinity of interfaces (Fig. 3c).



Fig. 3 Coordinate dependences of electrostatic potential (a), edges
of conduction band (solid lines) and valence band (dashed lines) (b),
and charge density (c) for d1 + d2 = 50LD, ΔEg(d1) = 0.1kT, κ = 0.5, and
d1/(d1 + d2) = 0.5 (1), 0.2 (2), and 0.05(3)
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For small values of the layer thickness (d1, d2<< LD),
the electrostatic potential nearly does not depend on the
coordinate

φ ξð Þ≅ βþ κδ

2
: ð14Þ

Therefore,

ΔEc ξð Þ≅Δχ ξð Þ; ð15Þ

ΔEv ξð Þ≅Δχ ξð Þ−ΔEg ξð Þ; ð16Þ

i.e., the profiles of the band edges are determined only
by the coordinate dependences of Eg and χ. Such a prop-
erty is also observed in doped superlattices.
Conclusions
Charge carrier redistribution taking place in a sawtooth-
like graded-band-gap superlattice leads to formation of
energy band diagram which is characterized by the fol-
lowing features:

1. The shape of energy band diagram depends of the
value of the superlattice’s period and the ratio of
thicknesses of adjacent layers, with the most
noticeable size dependence taking place when the
superlattice’s period is of the order of the Debye
length.

2. Contrary to the symmetric graded-band-gap super-
lattices, the extrema of conduction or valence band
in the asymmetric superlattices are formed not at
the interfaces but within the layer of larger
thickness.

3. When the period of graded-band-gap superlattice is
much smaller than the Debye length, the profiles of
the band edges are determined exclusively by the co-
ordinate dependences of band gap and electron
affinity.
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